The thirsty mind of the fruit fly: from osmosensation to water-seeking motivation

Suewei Lin (林書葦)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.

To maintain body water homeostasis, the nervous system has to sense the water level in the body and drive water-seeking behavior when the body is dehydrated. To understand the neural mechanisms underpinning body-water sensing and water-seeking motivation, we investigate the nervous system of the fruit fly, where genetic tools permit the interrogation of neural circuits at singlecell resolution. We identified a pair of LHLK neurons in the fly brain that is activated by dehydration and releases the neuropeptide leucokinin to promote water-seeking behavior. LHLK neurons respond to dehydration by sensing the elevation of extracellular osmolality. This osmosensation requires the mechanosensory channel Pickpocket 26 (PPK26), the fly homolog of mammalian acid-sensing ion channels (ASIC). Leucokinin promotes water-seeking behavior by inhibiting two types of dopaminergic neurons in the mushroom body (MB), a computational center in the fly brain. These dopaminergic neurons encode the strength and specificity of the water-seeking motivation. Our study provides mechanistic insights into the neural basis of thirst, a primary desire conserved among almost all animals.